Search

Search Results

Dataverse de l'Université du Québec à Trois-Rivières Logo
Watson, Christopher; Carignan-Guillemette, Léonie; Turcotte, Caroline; Proulx, Raphaël; Maire, Vincent 2019-11-01 This data supports a meta-analysis investigating ecological impacts of intense lawn management (mowing). Raw data on invertebrate abundance and temperature data was collected by Léonie Carignan-Guillemette (2018) and Caroline Turcotte (2017) under the supervision of Raphaël Proulx and Vincent Maire (refer to Appendix S1 within related publication for more information). Other data was gathered and processed according to the following: We searched the Scopus database on 8 February, 2019 with the following combinations of keywords: (lawn OR turf) AND mowing AND (urban OR city). Generally, studies were ineligible when: full-text of the article was not available even after contacting the authors; mowing was incidental to the study and not an experimental factor; response variables were not ecologically relevant; confounding factors (e.g. fertilisation) could not be isolated; a non-urban context was used; or simulated data were presented. We extracted the mean and statistical variation (standard deviation or standard error) for each response variable in control (less-intensively mown) and treatment (intensively mown) groups. Reported data were used when available. Otherwise, data were extracted from published figures using the Web Plot Digitizer tool. Where summary data on median, and interquartile range was presented, mean and standard deviation was estimated. Variables with multi-temporal data (e.g. soil moisture) were summarised using the mean and pooled standard deviation to provide an aggregated value per site per year. Where seasonal trends were evident in raw multi-temporal data (e.g. soil temperature), data was detrended using a polynomial function and analysis applied to the residuals. Data are provided "as-is". Please contact the authors for more details and information on use.
Dataverse de l'Université du Québec à Trois-Rivières Logo
Roy, Alexandre 2021-03-15 Three ruggedized soil moisture sensors (model GS-3; Decagon 302 Devices, Pullman, Washington, USA) were installed directly into 5.6 cm pre-drilled holes (length of probes) within tree trunks, in order to provide a measure tree relative dielectric constant (RDCtree) at Diameter Breast High (DBH). The probes are sensitive to liquid water, as liquid water has a high dielectric constant. The dielectric constant (D) follows ambient temperature in winter, but is near constant when trunks are thawed in the spring (Roy et al., 2020; Matheny et al., 2015).
Dataverse de l'Université du Québec à Trois-Rivières Logo
Ayoub, Mathieu; Leduc, Catherine 2019-02-28 <p>Dans le cadre de l'élaboration d'une offre de services en matière de gestion des données de la recherche (GDR), le Service de la bibliothèque et le Décanat de la recherche et de la création de l'Université du Québec à Trois-Rivières a procédé à une enquête sur les pratiques de ses chercheurs en matière de GDR.</p> <p>L'enquête s'est déroulée entre le 28 février et le 22 mars 2019. Sur les 460 professeurs et 35 chercheurs postdoctoraux invités à participer, 75 ont fourni une réponse complète ou partielle. Les fichiers enquete_gdr_uqtr_questionnaire_2019.pdf et enquete_gdr_uqtr_consigne.txt permettent de visualiser le questionnaire utilisé.</p> <p>Cette enquête comprend 37 questions. Il s'agit d'une version remaniée de l'enquête développé par le Consortium canadien d’enquête en GDR de <a href="https://portagenetwork.ca/fr/" target="_blank">Portage</a>. Les commentaires ont été retirés des données déposées dans Dataverse pour assurer la confidentialité des répondants.</p> <p>Liste des fichiers (noms des fichiers et description): <li>Lisez-moi_Enquete_GDR-UQTR_2019_v11-26-2019.txt : Description de l'enquête et des fichiers</li> <li>Enquete_gdr_uqtr_questionnaire_2019.pdf : Questionnaire utilisé pour le sondage à l'UQTR</li> <li>enquete_gdr_uqtr_consigne.txt : Consignes énoncées en début du sondage de l'UQTR</li> <li>Enquete_gdr_uqtr_donnees_2019_P.csv : Fichiers des données de l'UQTR formatées afin de permettre une intégration au fichier national de données de Portage</li> <li>Enquete_gdr_uqtr_CodeBook_2019_P.pdf : Dictionnaire des données du fichier "Enquete_gdr_uqtr_donnees_2019_P.csv"</li> <li>Enquete_gdr_uqtr_donnees_2019_N.tab : Fichier des données nettoyées d'origine</li> <li>Enquete_gdr_uqtr_Dictionnaire_Donnees_2019_N.pdf : Dictionnaire des données du fichier "Enquete_gdr_uqtr_donnees_2019_N.csv"</li> <li>Enquete_gdr_uqtr_resultats.pdf : Fichier PDF d'une présentation Powerpoint résumant les principaux résultats</li></p>
Dataverse de l'Université du Québec à Trois-Rivières Logo
Watson, Christopher; Carignan-Guillemette, Léonie; Turcotte, Caroline; Proulx, Raphaël; Maire, Vincent 2019-11-01 This data supports a meta-analysis investigating ecological impacts of intense lawn management (mowing). Raw data on invertebrate abundance and temperature data was collected by Léonie Carignan-Guillemette (2018) and Caroline Turcotte (2017) under the supervision of Raphaël Proulx and Vincent Maire (refer to Appendix S1 within related publication for more information). Other data was gathered and processed according to the following: We searched the Scopus database on 8 February, 2019 with the following combinations of keywords: (lawn OR turf) AND mowing AND (urban OR city). Generally, studies were ineligible when: full-text of the article was not available even after contacting the authors; mowing was incidental to the study and not an experimental factor; response variables were not ecologically relevant; confounding factors (e.g. fertilisation) could not be isolated; a non-urban context was used; or simulated data were presented. We extracted the mean and statistical variation (standard deviation or standard error) for each response variable in control (less-intensively mown) and treatment (intensively mown) groups. Reported data were used when available. Otherwise, data were extracted from published figures using the Web Plot Digitizer tool. Where summary data on median, and interquartile range was presented, mean and standard deviation was estimated. Variables with multi-temporal data (e.g. soil moisture) were summarised using the mean and pooled standard deviation to provide an aggregated value per site per year. Where seasonal trends were evident in raw multi-temporal data (e.g. soil temperature), data was detrended using a polynomial function and analysis applied to the residuals. Data are provided "as-is". Please contact the authors for more details and information on use.
Dataverse de l'Université du Québec à Trois-Rivières Logo
Roy, Alexandre 2021-03-15 Three ruggedized soil moisture sensors (model GS-3; Decagon 302 Devices, Pullman, Washington, USA) were installed directly into 5.6 cm pre-drilled holes (length of probes) within tree trunks, in order to provide a measure tree relative dielectric constant (RDCtree) at Diameter Breast High (DBH). The probes are sensitive to liquid water, as liquid water has a high dielectric constant. The dielectric constant (D) follows ambient temperature in winter, but is near constant when trunks are thawed in the spring (Roy et al., 2020; Matheny et al., 2015).
Dataverse de l'Université du Québec à Trois-Rivières Logo
Bilodeau, Marjorie; Leduc, Catherine; Zurek, Nadia 2022-06 Ce projet consiste à dresser un portrait du type de soutien offert par les bibliothécaires universitaires du Québec en lien avec les revues de littérature, en particulier le soutien aux Revues Systématiques. / This project consists in drawing up a portrait of the type of support offered by Quebec university librarians in relation to literature reviews, in particular support for Systematic Reviews.

Map search instructions

1.Turn on the map filter by clicking the “Limit by map area” toggle.
2.Move the map to display your area of interest. Holding the shift key and clicking to draw a box allows for zooming in on a specific area. Search results change as the map moves.
3.Access a record by clicking on an item in the search results or by clicking on a location pin and the linked record title.
Note: Clusters are intended to provide a visual preview of data location. Because there is a maximum of 1000 records displayed on the map, they may not be a completely accurate reflection of the total number of search results.